Hydrogen POV

Contacts: Peter Meijer, Aaron Denman, Per Karlsson, Brian Murphy, Are Kaspersen, Sean King, Tim Woolsey, Matthew Closs, Chloe Chuah

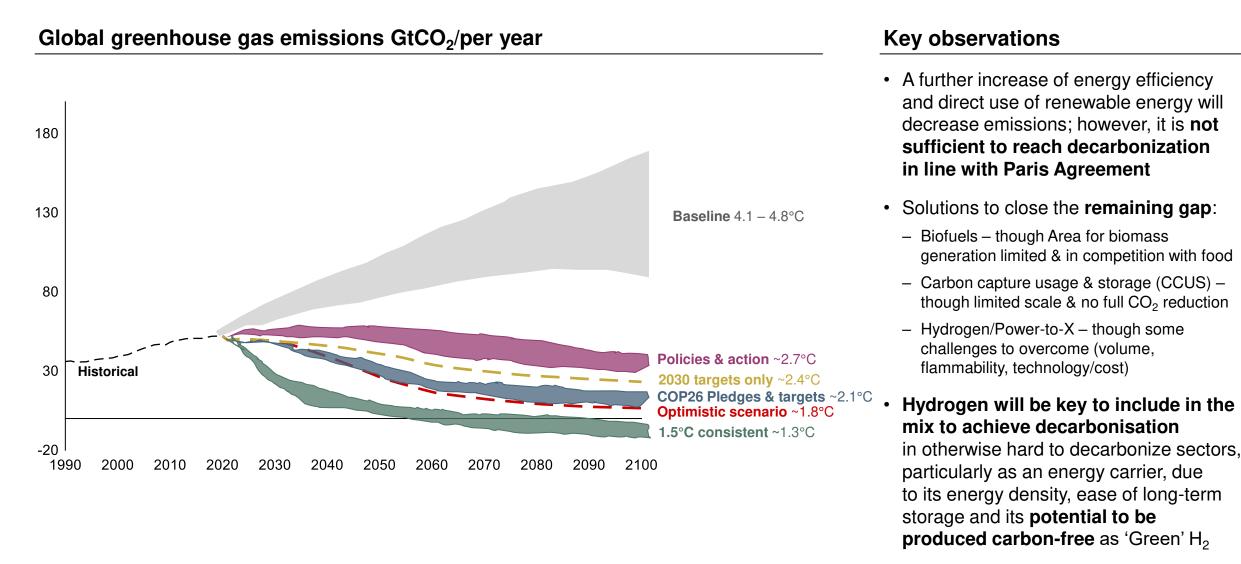
September 2022

Hydrogen is expected to play a major role in the global energy transition

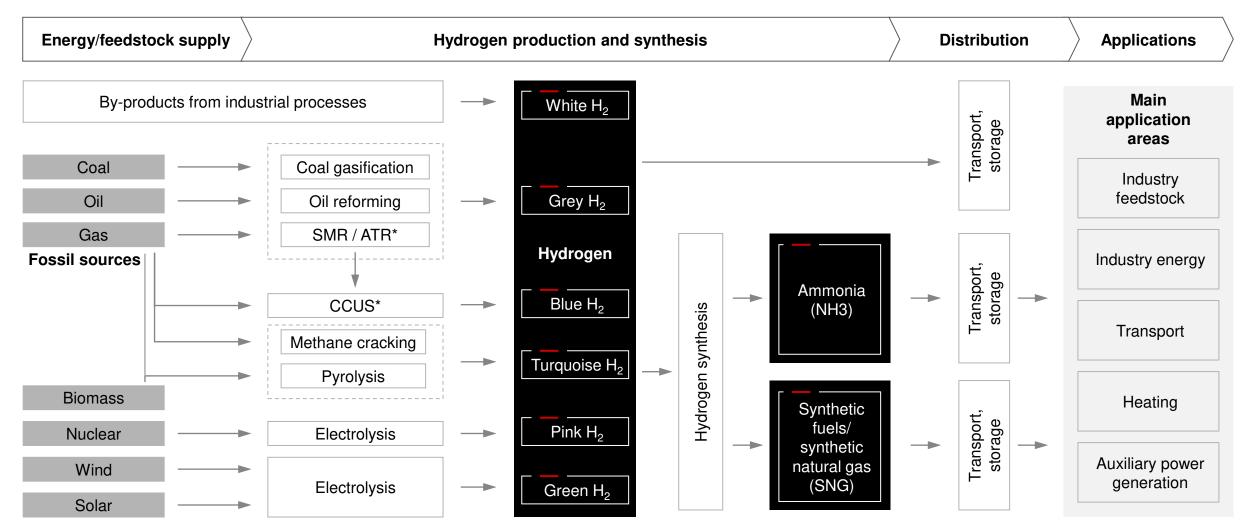
Clean hydrogen (and derivative) **market development has accelerated** in the last 12 months, with a step up in announced projects and supply capacity, and countries bolstering long term ambitions

Broad **commercial viability for clean hydrogen applications is expected to materialize this decade**, with specific pockets of development opportunity opening now, requiring detailed localized evaluation

We see **3 business models to initiate successful hydrogen projects** during this early maturity phase, next to the **initiatives required to develop technologies and infrastructure** across the value chain



Critical for each business model is to **understand which anchor customers and value chain partners** are required – to secure offtake and bring in the required capabilities – to gain experience early on

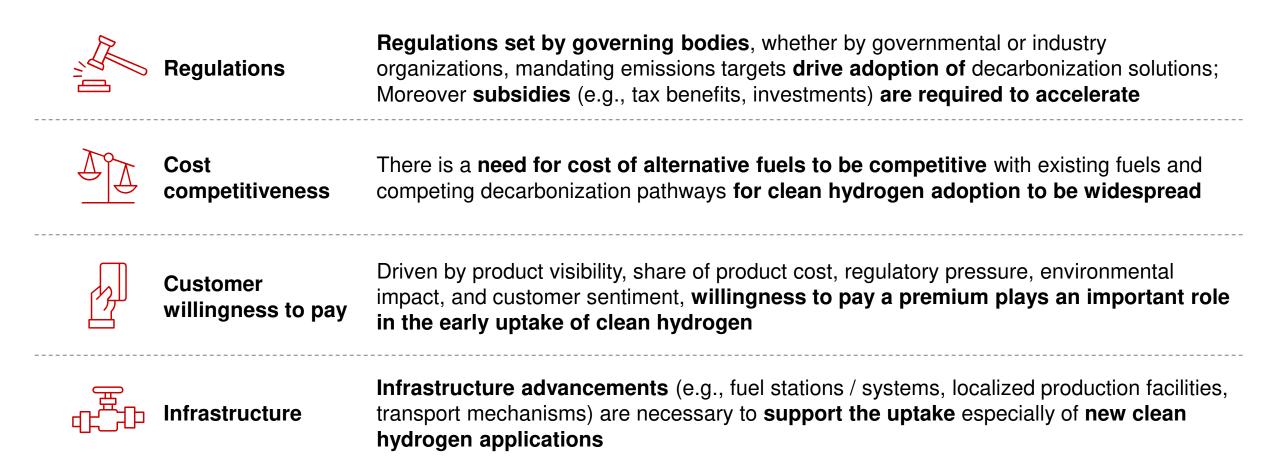

Market makers in clean hydrogen identify critical supply and demand trade-offs, lock in attractive initial offtake, and deliver a robust business case and execution plan

Hydrogen has the potential to play a major role in the energy transition

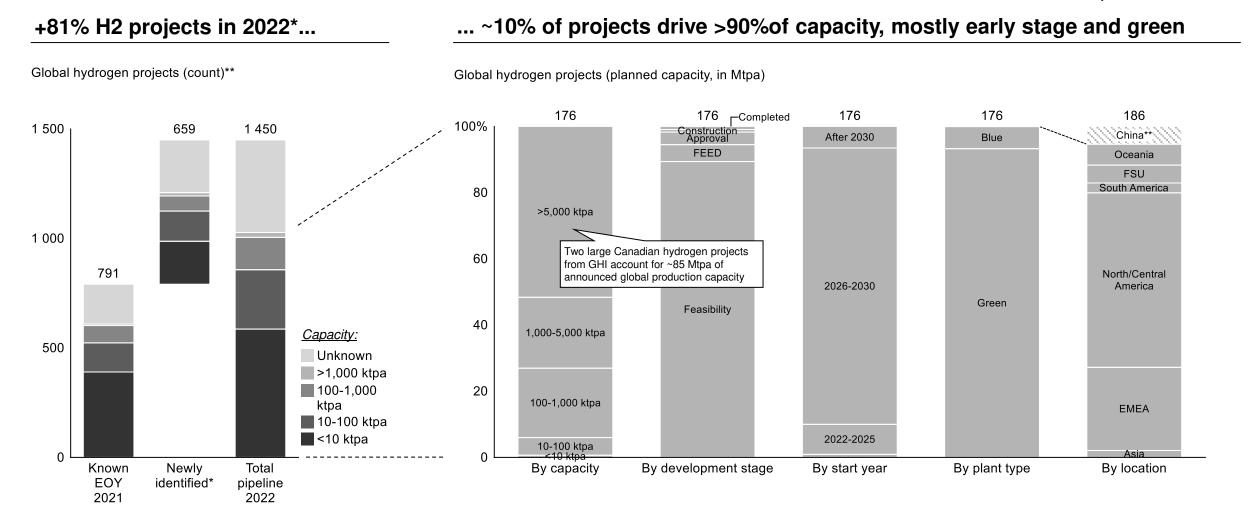
Source: Climate Action Tracker, November 2021


Hydrogen can be used pure or to produce other energy carriers like ammonia and synthetic fuels, and is especially relevant where few green alternatives exist

Renewable sources


* SMR = Steam Methane Reforming; ATR = Autothermal Reforming; CCUS = Carbon Capture, Utilization and Storage Source: IEA, IRENA, Bain & Company analysis

Hydrogen is mainly produced from fossil sources today; Blue and green hydrogen are low carbon alternatives but currently at a higher cost


Notes: 1) CCUS = Carbon Capture, Utilisation, and Storage; 2) Hydrogen produced from coal gasification or oil reforming also referred to as "black" hydrogen but is included under grey in this overview Source: Navigant, Hydrogen Council, Aurora, BNEF, FCH, IEA, IRENA, Shell, BP Energy Outlook 2020, Deloitte

/ P R E L I M I N A R Y

The clean hydrogen project pipeline shows a strong uptick, with many initiatives in feasibility stage targeting production start after 2025

| E S T I M A T E

*Estimate based on communication date, not reflecting exact timing of project initiation and does not include projects which have not been communicated to the market **China projects are underrepresented in the overall project count and capacity estimates and are thus excluded and only added in aggregate for the planned capacity by location (based on ~10 mmtpa 2030 supply estimate) Source: Bain assessment based on Globaldata Hydrogen Plant database (January 2023 update); Literature search

Large share of announced / planned projects appear to be contingent on government subsidies and direct investments

/ P R E L I M I N A R Y

Project	Location	Developer	Size (GW)	Description
Acorn Hydrogen Project	Aberdeenshire, Scotland	Pale Blue Dot.	0.7	 Project will reform natural gas into blue hydrogen, with the associated CO2 emissions captured and stored offshore
				 Project is contingent on receiving \$43 million in funding from Scottish Government
AquaVentus Electrolyser Plant	Heligoland, Germany		10	 Offshore wind-to-hydrogen project intended to produce 5GW by 2030 and 10GW by 2035
		ુ ઢક ત્રગાર ⊘Shell		 Expected to receive ~\$10bn in funding from Germany as part of the Important Projects of Common European Interest (IPCEI) initiative
Yuri Pilbara Hydrogen Hub	Western	VARA	0.5	Hydrogen / ammonia pipeline initiative to connect strategic industrial areas
	Australia	engie		Project dependent on Western Australia's state government funding of \$84.6m
Hydrogen to Humber (H2H) Saltend	Saltend, England		0.6	 Hydrogen production facility that will convert natural gas to blue hydrogen while capturing the associated CO2 emissions
		equinor		 Project submitted for round two (second cluster) of decarbonization funding program; UK government will invest up to £1 billion to support the establishment of CCUS in 4 industrial clusters
Edmonton Hydrogen Plant	Edmonton, Canada	PRODUCTS 2	3	 Plant would produce hydrogen-fuelled electricity and liquid hydrogen for transportation
				 Project subject to final completion of agreements and funding between Canadian authorities and Air Products; Air Products has already received \$15 million from the province's carbon levy

Source: FitchSolutions, AquaVentus

Key countries and regions are bolstering hydrogen ambition and investments

Country	y	Recent hydrogen policy developments	SELECTION OF RECENT DEVELOPMENTS
20004	nited	• In 2022, the Inflation Reduction Act was passed which includes a climate package the pro-	ovides ~\$369B in incentives that reduces the cost of clean energy projects
SI SI	tates	• In 2021 the Department of Energy introduced the Bipartisan Infrastructure Law, including	\$9.5B in clean hydrogen initiatives
		 In 2020, the Department of Energy established the Hydrogen Program Plan, a strategic fra advance the production, transport, storage, and use of hydrogen across different sectors of 	
	hina	 In March 2022, China's National Development and Reform Commission and energy regulat Produce 100-200 KTPA of green hydrogen by 2025 and roll out 50,000 fuel cell vehicles by 2025 Build innovative hydrogen technology platforms and promote hydrogen use in transport, energy storage, heaving 	
**** El	U	• In 2023, the EC proposed a legislative framework for the European Hydrogen Bank aimed	d to incentivize early projects
****		In 2023, the revised Renewable Energy Directive (RED III) includes green hydrogen target	ets and taxonomy on what is renewable
		• In 2022, REPowerEU aims at decreasing EU's dependency on Russian fossil fuels, a.o. su	pporting the switch to renewable hydrogen
		 In 2021, the EU released a hydrogen and decarbonized gas market package proposing hydrogen, create the right environment for investment, and enable the development of dedice 	
🔵 In	ndia	• In 2021, India launched its national hydrogen mission that targets production of 5M mt/ye	ear of green hydrogen by 2030
		 India's green hydrogen policy offers a range of incentives such as 25 years of free power hydrogen production before July 2025 	er transmission for any new renewable energy plants set up to supply power for green
Ja	apan	 In 2023, Japan updated its Hydrogen strategy from 2017, implementing more ambitious g investments (¥15T / \$113B in hydrogen and renewables over the next 15 years) and specifi 	
	outh Iorea	 In 2021, Korea announced its basic hydrogen economy plan aiming to provide 27.9M mt/ mt green hydrogen from overseas) by 2050 	/year of clean hydrogen (3M mt green and 2M mt blue hydrogen production, plus 22.9M
<u></u> Aı	ustralia	In 2022, Australia committed ~\$975M for hydrogen, clean energy, and CCUS in its budg	get
		 In 2021, Australian government extended their national gas regulatory framework to hydr investment in innovative projects 	rogen blends and renewable gases in order to provide regulatory certainty to support
1000 CONTRACTOR	audi rabia	Currently, Saudi Arabia is developing a national hydrogen strategy focusing on production	, exports and domestic use. Several investments have already been announced
	AE	• UAE has launched seven strategic hydrogen production projects worth \$1.7bn and is target	ting 25% of global hydrogen market by 2030
	AE		

Multiple technology paths could shape demand and supply

Production	\rangle	Distribution	Application	n by Sector			
Generation	Transport	Storage	Reconversion	Distribution	Us	age	
Blue H2	LOHC	Ammonia	LOHC \rightarrow De-	Blending	Power G	eneration	
Methane	(e.g., formic acid)		hydrogenation	-	Hydrogen gas	turbines (pure)	
Pyrolysis/Cracking	Methanol	Compressed	Methanol →	100% H2		turbines (pure)	
Autothermal	Wethanoi	H2	SMR	Refurbish	H2 k	blend	
Reforming		Storage tanks	Liquid H2	Replace	Maritime		
Steam Methane Reforming (SMR) +	Ammonia	Salt caverns	Regasification		Ammonia engines		
CCS		Aquiforo	Ammonia →	Through:	Methanol engines		
Green H2	LH2	Aquifers	Cracking	Liquid H2	Industrials		
(Electrolysis)		Gas fields		Tankers	Feedstock		
Polymer Electrolyte	Compressed				Domestic grey	Domestic blue	
Membrane	H2	LH2 storage		Pipelines	Imported blue	Imported green	
Membrane-less				Gaseous		uel	
Solid Oxide				H2	Electrification		
Electrolysers		tube trailers	Aviation				
Alkaline	Sustainable aviation fuel						
Source: Lit Search, Bain Analys	is	Legend: Dem	onstrations	arket Mass duction	Production	areas critical for trategy (illustrative)	

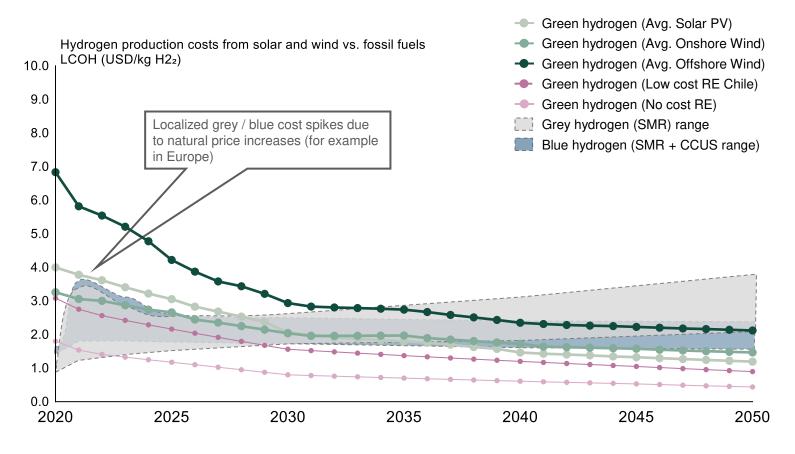
Related technologies

Renewable energy As input for green H2 or as substitute for power generation, heating

Nuclear (SMR, gen IV, fusion) As input for pink H2 or as substitute for baseload power generation

Catalysts and critical minerals To ease bottlenecks on electrolysis expansion (new or recycled)

Batteries As substitute in transport and power storage, or fuel cells / hydrides for using and transporting H2

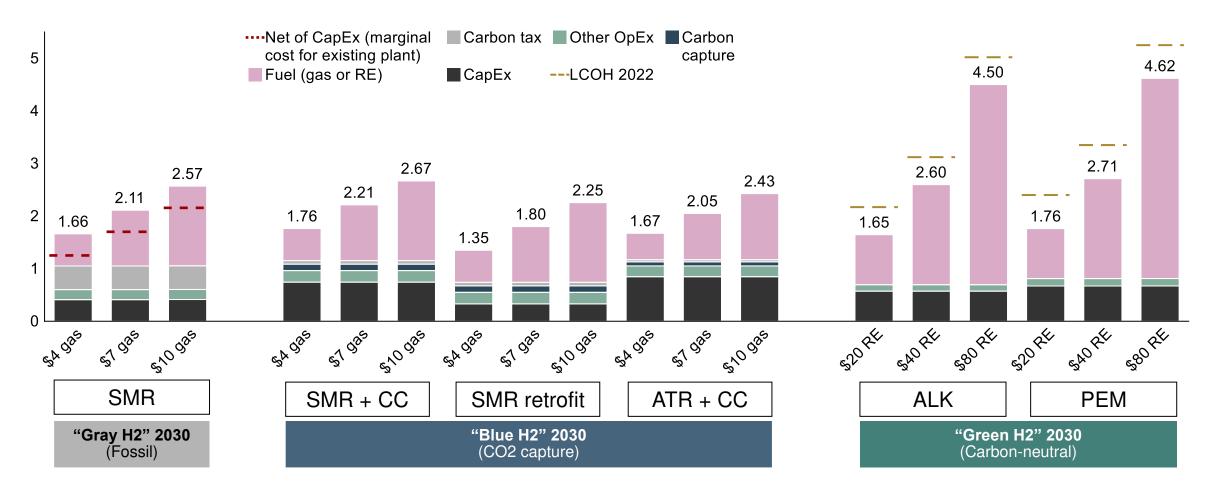

Biofuels Alternative decarb route for some forms of transport

Direct Air Capture Substituting for H2-based decarb, or allow net-zero production from fossil fuels

Novel carbon uses Changing the economics of gas-led hydrogen paths

Long term, green hydrogen will be cost advantaged versus grey and blue

Levelised cost of hydrogen production from solar and wind vs. fossil fuels (\$/kg)

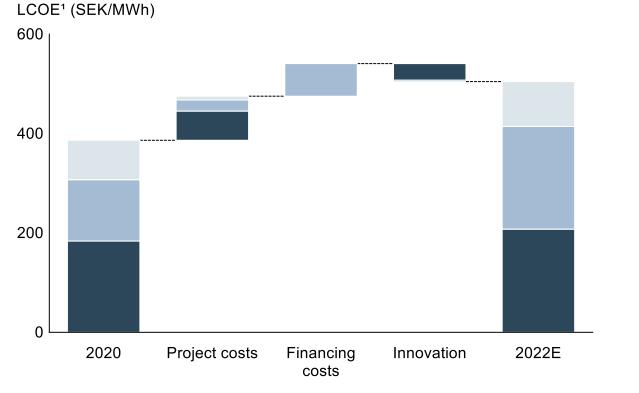

Key observations

- Future costs of green hydrogen will be lower than SMR and SMR/ATR + CCUS (grey, blue)
- Today's high natural gas prices drive up grey and blue production cost (e.g., early 2022 WEU grey hydrogen costs were >4x versus 2020)
- Around 2030, average-cost green hydrogen production becomes competitive, driven by:
 - Ongoing renewable energy price decreases
 - Capex reductions driven by electrolyser learning
 - Legislation including carbon tax pricing increases
 - Expected long term natural gas price dynamics
 - Supporting government subsidies
- In the best locations, renewable hydrogen is competitive today or in the next few years
 - Access to low-cost renewable energy given localized conditions (e.g., current curtailment)
 - Known and proximate demand to serve as an off-taker with limited transportation infrastructure required
 - Supportive regulatory policies

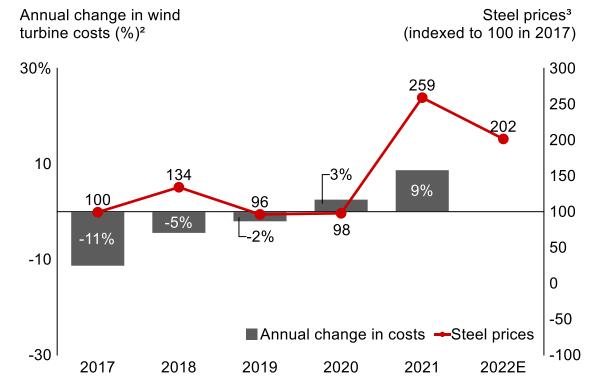
Note: Remaining CO₂, emissions are from fossil fuel hydrogen production with CCS. Electrolyser costs: 990 USD/kW (2020), 460 USD/kW (2030), 330 USD/kW (2040) and 260 USD/kW (2050). Electrolyzer efficiency: 65% in 2020, 70% in 2030, and 80% by 2050. CO₂ prices: USD 50 per tonne (2030), USD 50-100 per tonne (2040) and USD 100-200 per tonne (2050). Low range for fossil fuel hydrogen \$3/MMBTU, high range \$8/MMBTU Source: IRENA 2019, NREL, EIA, BNEF, Lazard, Chile Department of Energy, Wood Mac, Bain analysis

By 2030, green H2 may be cost advantaged versus gray / blue if renewable energy prices continue to fall, a carbon tax is implemented, or if natural gas prices rise

Levalized cost of hydrogen (\$/kg) at \$50/tCO2 tax



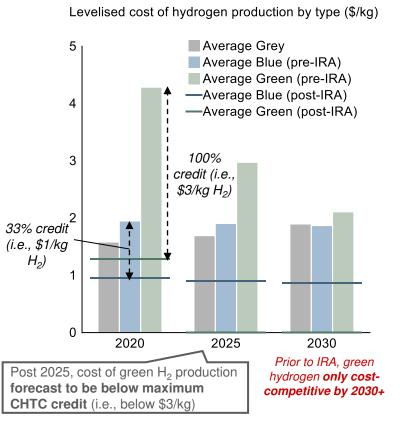
Note: Carbon tax \$50/tCO2; ATR CC 91%, SMR 85%; electrolyzer learning rate at 15% at 107,000MW global installed capacity 2030, 644MW 2022 capacity; PEM/ALK efficiency at 70%; operating capacity factor at 40%; CCUS cost at \$16/tCO2 Source: Bain analysis


Production cost declines for green hydrogen are now pressured by changing macro conditions impacting capital and financing costs and thus renewable energy LCOE

WIND POWER EXAMPLE

Increasing financing and capital costs are the main drivers of increasing wind power LCOE

Core material price increases such as steel is the key driver of higher CAPEX


Capital costs Financing costs Operation and maintenance

Note: 1) Based on a benchmark project in Europe/ North America with revenue support mechanism. Converted from USD to SEK at current exchange rate; 2) Based on global average prices excluding installation costs by signing date; 3) 2022 price based on average prices between January and March Source: IEA World Energy Investment Report

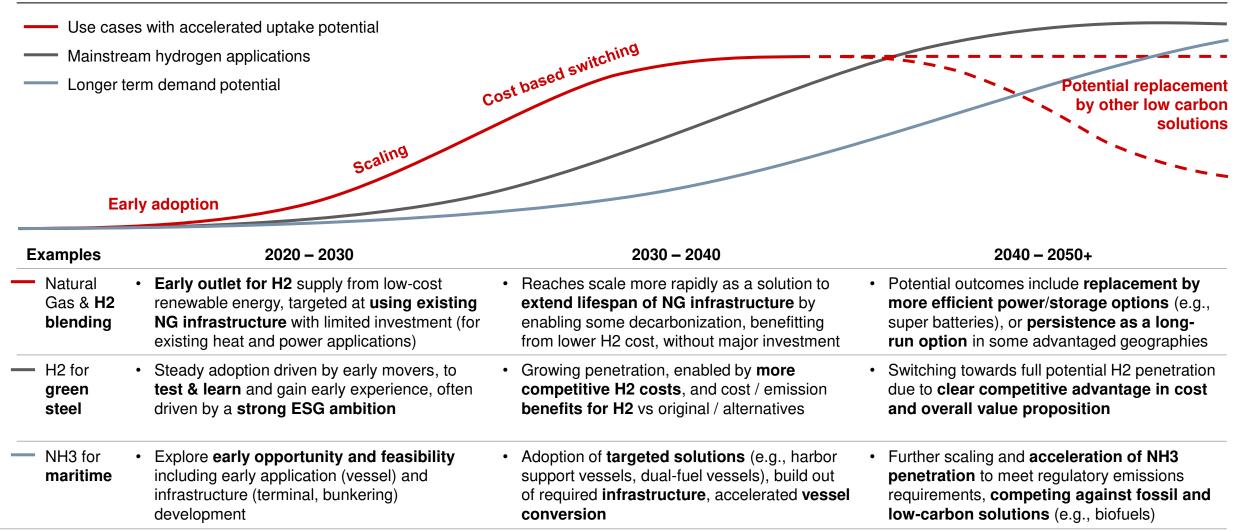
The clean hydrogen tax credit decreases costs of clean H₂

- Greenfield or retrofit facilities constructed before 2033 are eligible for the CHTC¹ for **10 years** from the start of producing clean H₂
- Green and blue H₂ projects qualify for different levels of support
 - **Green**: 0kg CO_2 emissions; up to $3/\text{kg H}_2$ produced
 - Blue: 0.5 1kg CO₂ emissions/kg H₂; up to \$1/kg H₂ produced
- The CHTC cannot be combined with • other carbon capture credit programs included in the IRA (i.e., blue H₂ cannot receive credit for both clean H₂ and carbon captured)

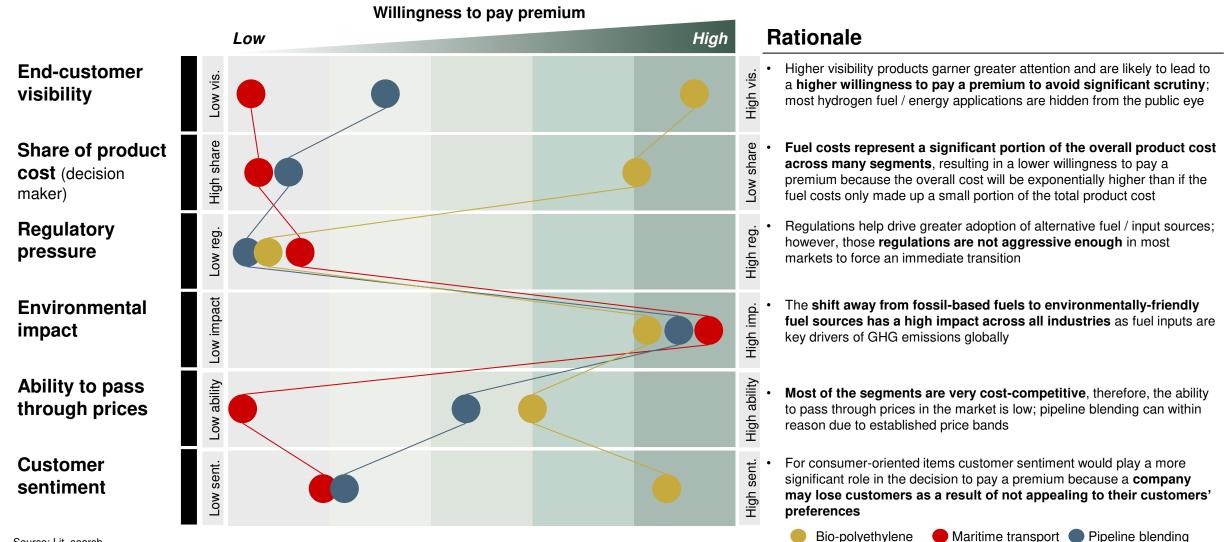
IRA could bring green production cost decline forward >10 years

Rate of change transition to green hydrogen still uncertain

Unclear whether H₂ demand will increase significantly in the shortterm; novel use-cases (e.g., transport) not expected to scale for some years


IRA is **likely to accelerate the** greening of ongoing H_2 applications with existing demand (i.e., industrial processes)

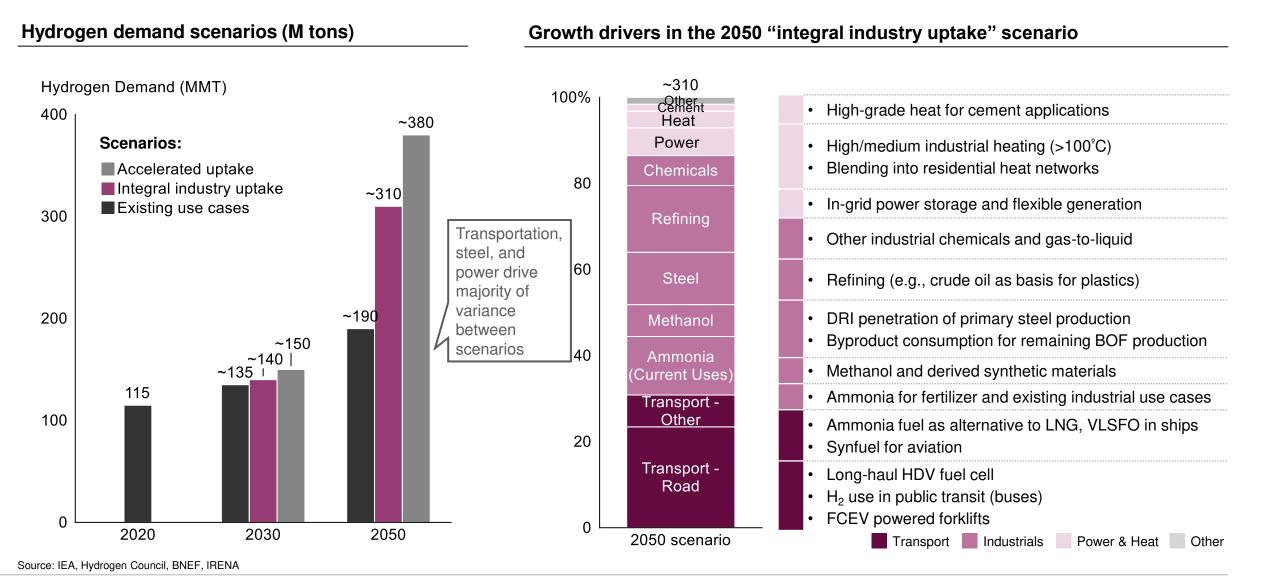
Note: 1CHTC = Clean hydrogen tax credit; H₂ = Hydrogen; ITC = Investment tax credit; Electrolyser costs: 990 USD/kW (2020), 460 USD/kW (2030), 330 USD/kW (2040) and 260 USD/kW (2050). Electrolyzer efficiency: 65% in 2020, 70% in 2030, and 80% by 2050. CO₂ prices: USD 50 per tonne (2030), USD 50-100 per tonne (2040) and USD 100-200 per tonne (2050). Low range for fossil fuel hydrogen \$3/MMBTU, high range \$8/MMBTU;. Source: RMI, DLA Piper; IRENA 2019, NREL, EIA, BNEF, Lazard, Chile Department of Energy


Clean hydrogen applications are being developed to build out demand, though speed of market adoption will vary significantly across use cases

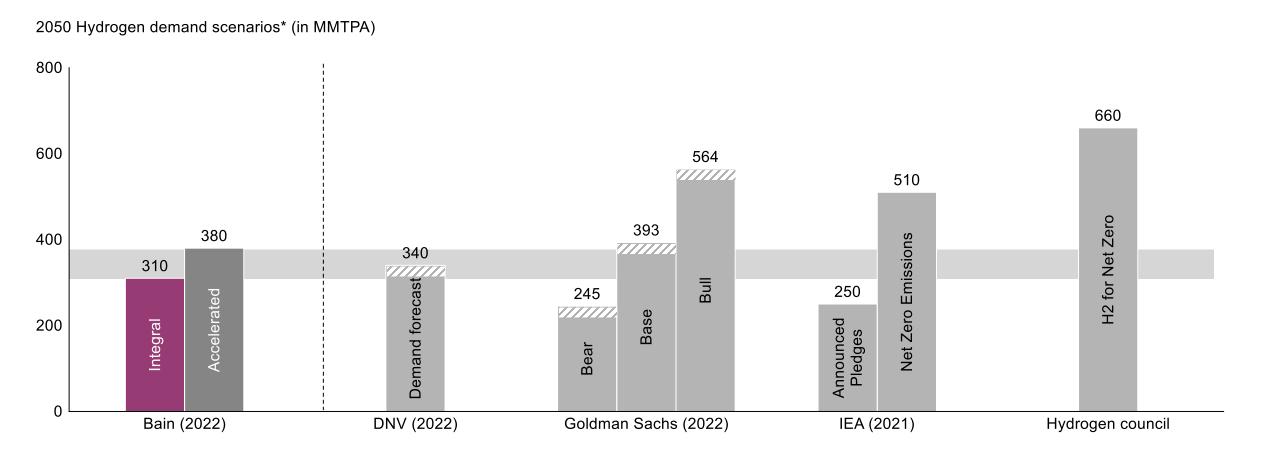
ILLUSTRATIVE

Clean hydrogen adoption pathways

In many alternative fuel / energy cases potential hydrogen customers generally have a low willingness to pay a premium unlike, for example, bio-based plastics



Source: Lit. search


We envision a number of feasible paths for hydrogen demand, based on degree to which policy, investment, and innovation enable competitiveness and early adoption

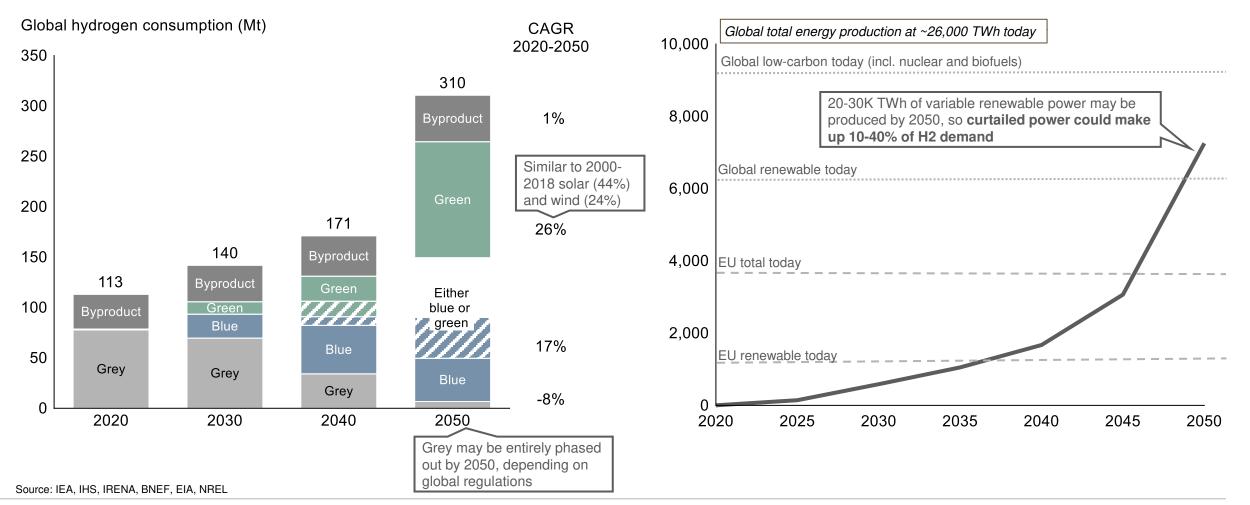
Scenario High-level assumptions on the evolution of the hydrogen market and demand Hydrogen demand mostly persists in industries where it is present today with low-growth to 2050 "Focused" uptake • Some **incremental uptake** likely in core applications with limited decarbonization alternatives (e.g., steel) • For other end markets where **non-hydrogen but low-carbon alternatives exist**, hydrogen fails to reach cost competitiveness or gain a foothold against competing alternatives (e.g., BEV) Investments are directed accordingly and promote alternative solutions towards emission reduction Hydrogen plays a meaningful role in the decarbonization of the world "Integral industry" uptake • By 2030, core applications of hydrogen have **matured and provided scale**, driving down the cost of hydrogen and enabling cost competitiveness in new applications Investments in hydrogen market and infrastructure enable the acceleration of adoption. particularly in end markets such as transportation • Hydrogen is a **central component of decarbonization**, emerging as a leading technology even in select "Accelerated" uptake end markets where non-hydrogen alternatives exist today • Above and beyond the "integral industry" scenario, nascent applications gain a foothold earlier (e.g., hydrogen as fuel in aviation, hydrogen use in power) • Investments behind hydrogen are a core element of decarbonization strategy and policy, and are undertaken on a more rapid timeline

Based on supply capacity, legislation developments, and long-term demand potential across applications, we expect 2050 H2 demand to be ~310 to 380 MMT

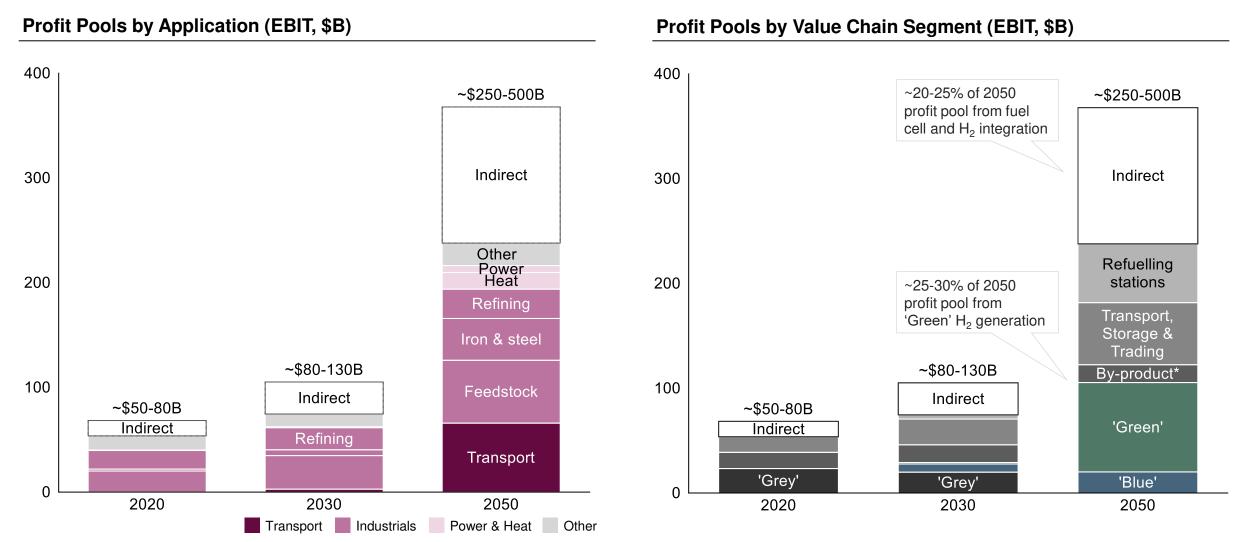
Bain's H2 scenarios broadly align with other recent market forecasts, though uncertainty remains, and net-zero derived scenarios tend to assume higher uptake

Note: *Where scenarios do not include the contribution of by-products (white hydrogen), 25 mmtpa has been added to the scenario total, which is also indicated by the shaded area on the chart Source: DNV, Goldman Sachs, IEA, Bain analysis

Local market, customer and regulatory dynamics will also show varying adoption of green versus blue hydrogen across regions (example U.S. Gulf Coast, pre-IRA)

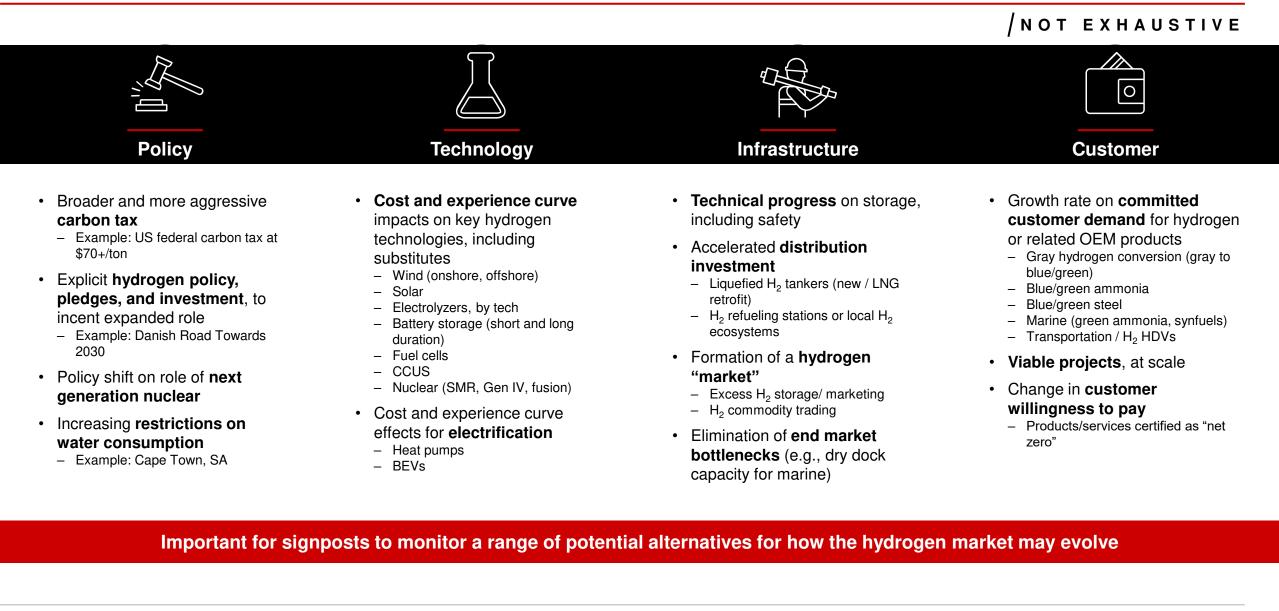

					Likely sou	urce of H2	
Main	end use	Consumption	Outlook for H2	Today	2030	2035	2050
Cherr refini Steel	nicals / ng	Centralized	 Low-cost NG in USGC will continue to win on cost into early 2030's Green H2 will need significant cost reduction through lower capex and renewable costs; refining likely remains blue, but potential small pockets of adoption in chemicals by 2050 				
Steel		Distributed	 Targeted regulatory requirements will drive near-term transition to blue Due to the distributed nature of steel production, even within the USGC, on-site production of green H2 will be best long-term option 				
Trans – Roa	sportation ad	Distributed	 New use case of H2 to decarbonize transport likely to skew green as soon as it is economical (mid 2030's to 2040's) 				
Heat		Centralized / Distributed	 Existing industrial H2 feedstock customers will likely mirror feedstock H2 source All other industrial or residential users likely to use green H2 from the beginning of the conversion, though large-scale residential heat adoption unlikely to happen 				
Powe Powe Trans – Mar	er	Centralized / Distributed	 Low % H2 blending (~1-5%) into NG streams is nearest-term power application; H2 retrofitted turbines for higher-% H2 stream will play an increasingly large role in utility-scale power gen Green H2 highly unlikely to be involved in power gen in lieu of connecting renewable to grid 				
Trans — Mar	portation ine	Distributed	 Centralized production in port cities, but robust global market Green vs. blue will depend on energy input costs, with US likely using blue before 2030 and other shipping countries (e.g., Japan, EU) using green or importing ammonia from USGC 				
Trans – Rail	portation	Distributed	Similar to other types of transportation, new use cases of H2 to decarbonize rail are likely to skew green as soon as it is economical				
Amm regas	onia / s exports	Distributed	Given regulatory tailwinds, global ammonia exports are likely to shift to blue / green as countries look to satisfy emission requirements and net-zero pledges				
			<i>Key</i> H2 Not used Grey H2 Grey/Blue H2 mixed use	Blue H2		Green ked use	Green H2

Green uptake will depend on energy input prices and ability to scale renewables

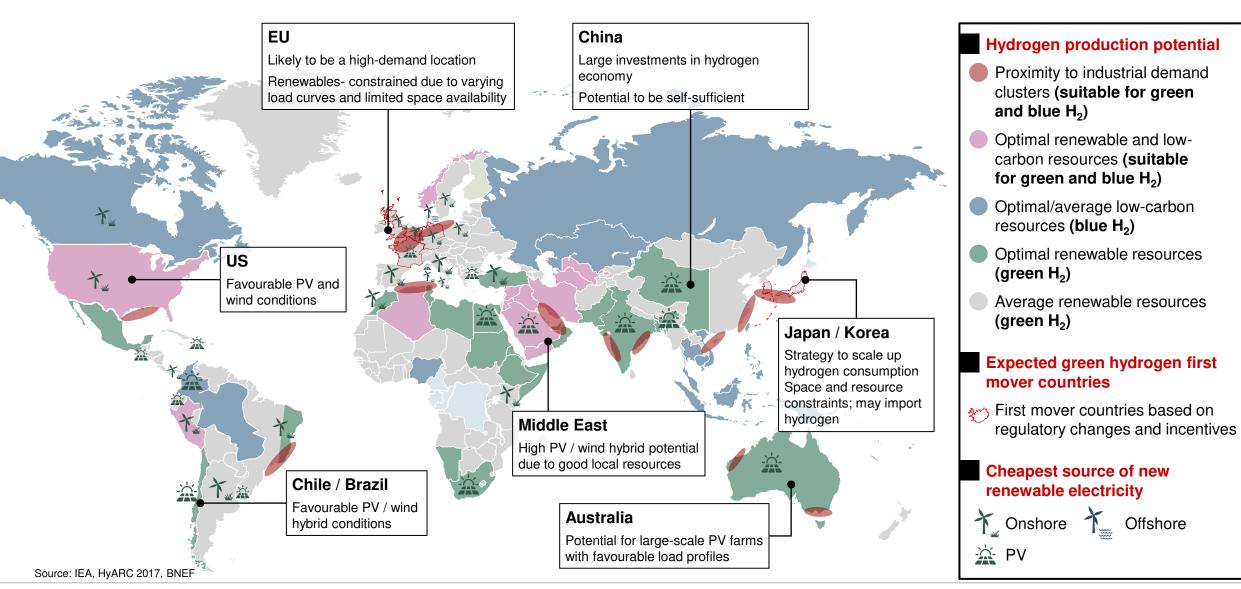

PRELIMINARY

All sources of H_2 will contribute through 2050, green could be 40-70% in the "Integral Industry" scenario

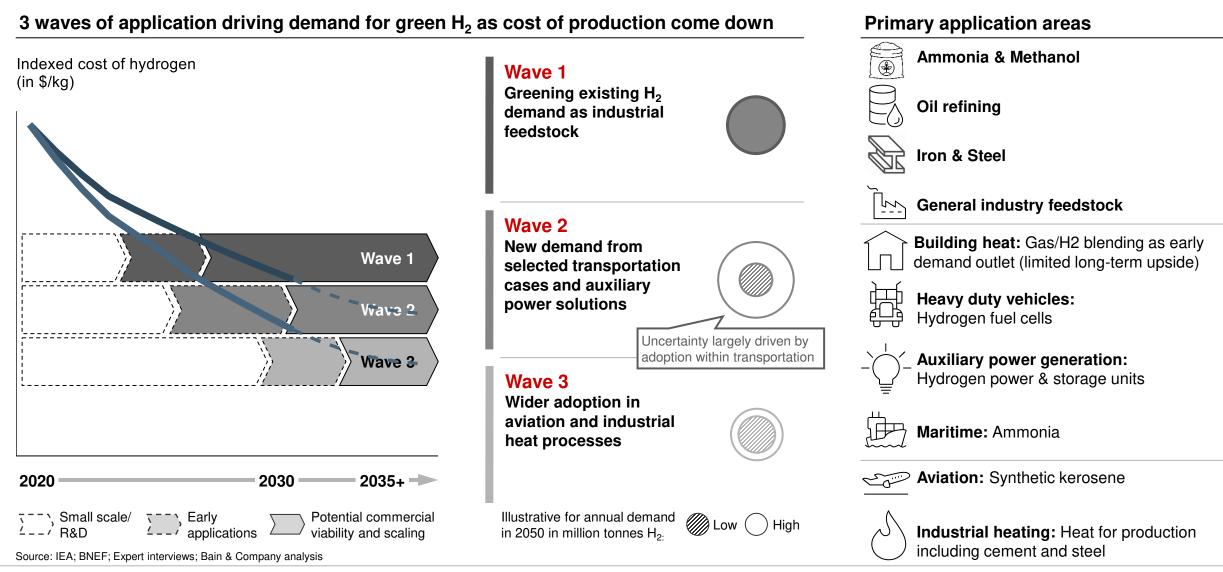
To meet this, green hydrogen production would require ~7,300TWh of renewable energy supply by 2050



The "integral industry uptake" scenario could lead to profit pools of \$250-500B by 2050 albeit with long lead time to maturity



Note: Indirect profit pools include supply of commodities, development of H₂-related technology (electrolysers, fuel cells), integration services (fuel cells and H₂ in processes), and advisory roles; (*) Hydrogen produced as waste from industrial electrochemical processes that is captured and consumed within the same facility or sold into the merchant market for use by others


Given uncertainty on market development, monitoring key signposts is required to drive adaptability as the market evolves

Hydrogen opportunities will mature at different speeds depending on local supply dynamics and proximity to key demand clusters

At the application level, we expect different waves of adoption and especially scaling – first wave likely to include converting existing grey to blue and green

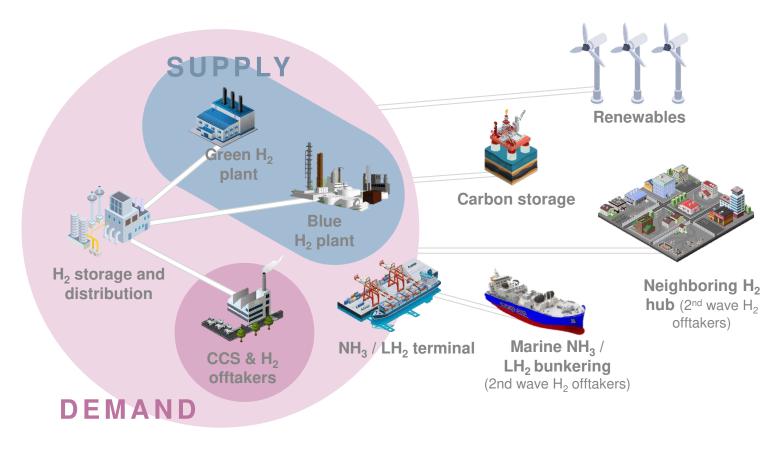
As part of the current market acceleration, we see three partly reinforcing business models emerging, plus scale up of technology and market enablers

Low LCOE		Scale hydrogen clusters							
global supply hubs	Supply-led	Integrated hubs	Demand-led	solutions					
Large scale integrated projects using NG and off- grid RE systems in lowest LCOE regions <u>Vinning capabilities:</u>	Proximity to local hydrogen source, e.g., offshore wind and H ₂ production on land or integrated at sea	Integrated hubs around multiple use cases, connected to green / blue H ₂ at scale, mostly to decarbonize industries	Linkage of concentrated demand in locations without direct access to low-cost hydrogen (e.g., co-firing in Japan)	Localized pilot projects of decarbonization efforts around specific use cases including decarbonization as-a-service models					
 Financing, project development and EPC 	 OW scale and track record 	 Anchor demand; use case understanding 	 Deep understanding of application technology 	 Local market position B2B customers and 					
 RE & electrolyser integration End-market understanding 	 Electrolyser integration Power market & customer position 	 Competitive scalable supply Local regulatory shaping 	and performance vs alternativesScalable and reliable supply infrastructure	 Holistic technology and cost knowledge for alternatives 					
Share of 2040 H2 supply: 40- 60%	10- 20%	30- 40%	<1%*	<10%					
Degree of standardization:									
	Enabling technologies and infrastructure scaling								

*Very limited share in supply – could be 10-30% of future demand Source: IEA, Hydrogen Council, BNEF, IRENA; Bain analysis

Projects are now emerging at scale across these business models

GREEN H2 ONLY SELECT EXAMPLES


	Project name	Country	Production start year	Description	Electrolyzer size / KTPA	Participants
y hubs	Project Nour Green Hydrogen	Mauritania	2024	 Chariot, an African focused transitional energy company is collaborating with the govt. of Mauritania to develop a potential 10 GW green hydrogen project using solar and wind energy 	4214 (600* ktpa)	
LCOE supply	TransHydrogen Alliance Port of Pecem	Brazil	2026	 A consortium of Proton Ventures, Global energy storage and Varo Energy called Transhydrogen are investing \$2B aiming to produce green hydrogen and green ammonia 	3512*(500 ktpa)	CES
Low LC	H2Perth Green Hydrogen	Australia	2027 (Phase 2)	 Woodside launched the H2Perth project to establish a hydrogen and ammonia production facility with an initial electrolyzer capacity of 250MW with potential to scale to more than 3GW in the 2nd phase 	3000 (438* ktpa)	Woodside
d cluster	H2opZee Hydrogen Project	Netherlands	2030	 Neptune Energy and RWE are collaborating to develop H2opZee offshore green hydrogen project which aims to build 300-500 MW of electrolyzer capacity in the North Sea 	500 (71* ktpa)	
Supply-led	Enterprize Energy Thang Long Hydrogen Project	Vietnam	2030	 Enterprize Energy and the Vietnamese Institute of Energy are collaborating to develop the 3.4GW Thang Long offshore wind farm to produce more than 330,000 tonnes of green hydrogen in Vietnam 	2318* (330)	
ed hub	Hydrogen city, Texas Hub	US	2026 (Phase 1)	• Green Hydrogen International (GHI) plans to develop an integrated green hydrogen production, storage, and transport hub growing to 60GW renewable capacity (solar & wind power) in Texas	2000 (*285 ktpa)	
Integrated hub	HyDeal Espana	Spain	2030	 HyDeal Espana is the first industrial implementation of the HyDeal ambition platform that aims to achieve electrolyzer capacity of 67GW and 3.6M tonnes of green hydrogen production by 2030 	7400 (330 ktpa)	DH2 energy Fertiberia ArcelorMittal

*Calculated using a fixed conversion factor; Source: GlobalData, Lit. search

Strong early traction on development of industrial clusters

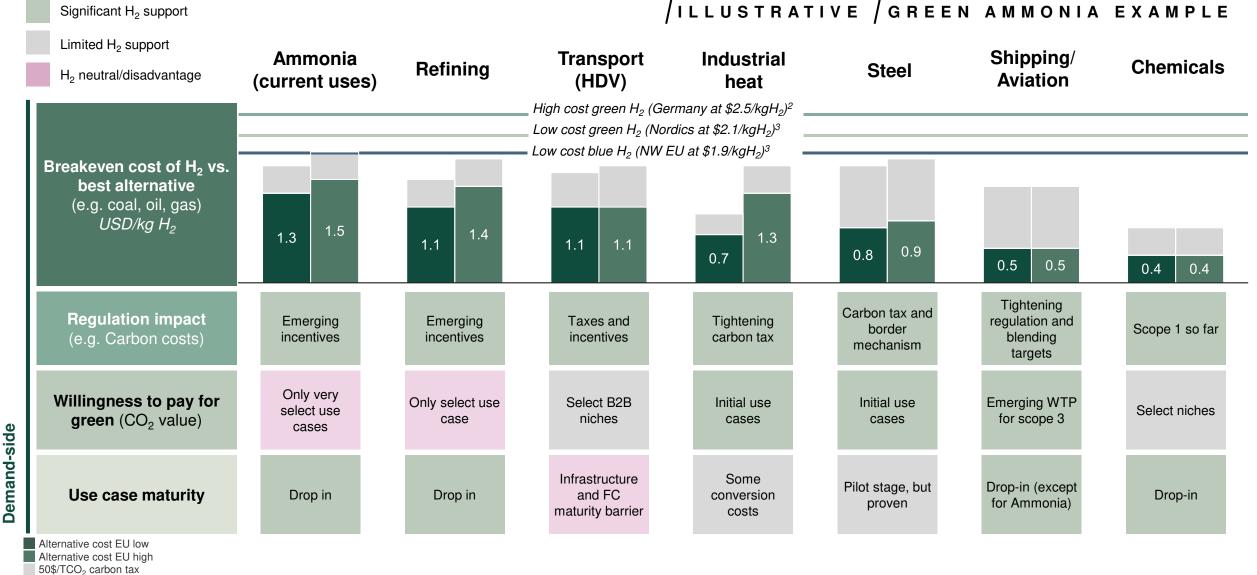
NOT EXHAUSTIVE

Industrial clusters: co-location of H2 supply & demand

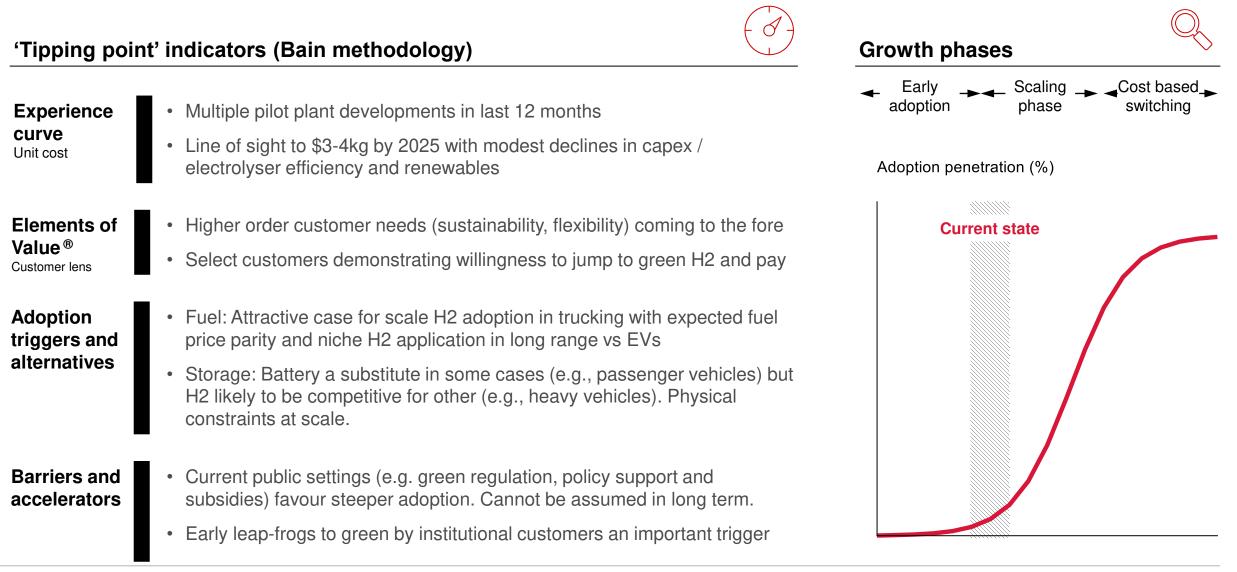
Significant investments for industrial clusters

Invested to develop **4 H2 hubs**, amounting to **84%** of total infra budget for low-carbon H2

Invested to develop **4 'SuperPlaces'** (low-carbon industrial zones)

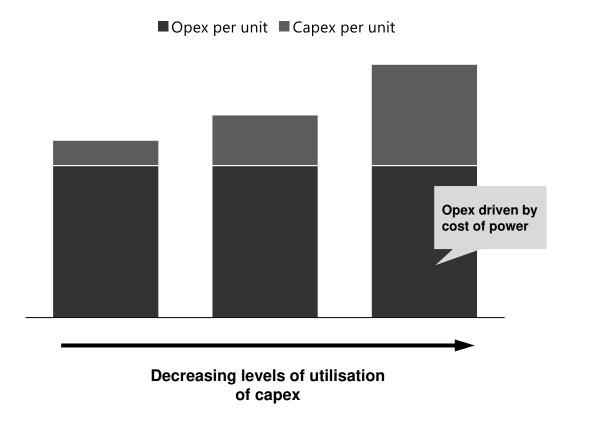

Invested to develop low-carbon infrastructure in Alberta for blue H2 acceleration

To unlock attractive H2 and derivative projects in the near term, multiple supply-side and demand-side drivers need to come into place


	L	ow attractiveness ┥			/	GREE	ENAMMONIA EXA ────────────────────────────────────	
Supply- side	Access to cheap RE electricity Regions with largely uncompetitive RE costs (>\$30/MWh) Regions with access to competitive RE costs (<\$30/MWh)							
	Maturity of relevant infrastructure	Limited infrastructure		infrastructure for rant industries*	Significant infrastru relevant indust		Significant existing H2 infrastructure	Largely ≻ localized
	Scale capacity enabled by infra		gnificant infrastructure required generation on site required, generation		o moderate infrastructure uired, generation on site rid connected electrolyzer)	trade-offs		
	Government support (e.g., subsidies) No green subsidies Limited/lagging green subsidies Significant/leading		ant/leading green subsidies					
Demand -side	Cost of best alternate (e.g., coal, oil, gas)				Drop-in and best decarbonization option			
	Regulation impact (Carbon costs and)	No carbon tax or incentive		carbon tax impact id incentives	Medium carbon tax impact and incentives		High carbon tax impact and blend in or other incentive	Largely driven by
	Willingness to pay for green (CO2 value)		on green solutions en premium)				n on green solutions n premium)	the specific use-case
	Use case maturity	Technology and infra. barriers remaining (e.g., H2 carrier, direct power gen)	and	e, but existing tech infrastructure onia for shipping)	Mature tech, ma infra to be sca (e.g., co-firir	aled	NH3 drop-in opportunity (e.g., fertilizer, industrials/chemicals)	

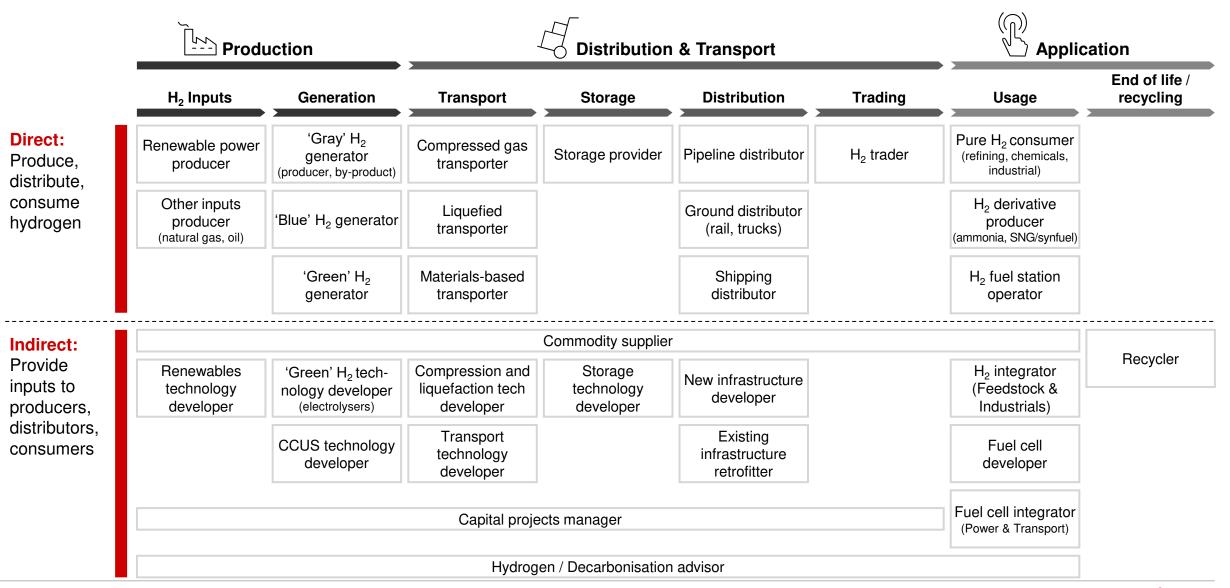
Demand-side attractiveness varies across use cases, and individual customers, but on average for the next 5 years will require project CAPEX/OPEX support

Source: IEA, Hydrogen Council, BNEF, IRENA, Bain project experience


Indicators are that green H2 is tipping to meet customers' zero carbon energy needs

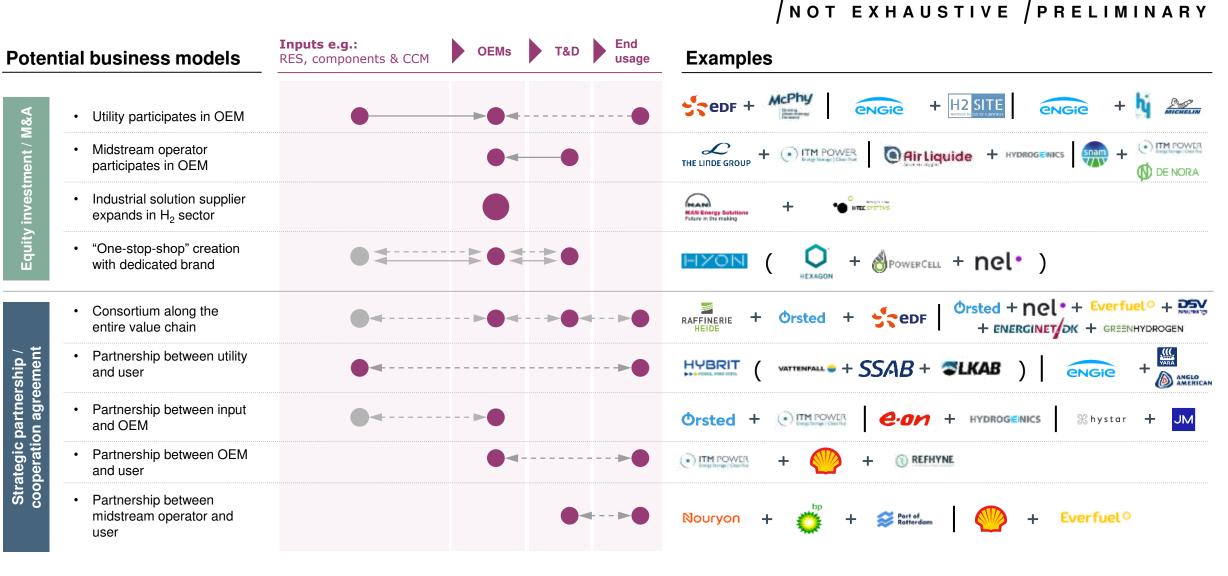
Current hydrogen economics dependent on specific customer characteristics

-evel of importance

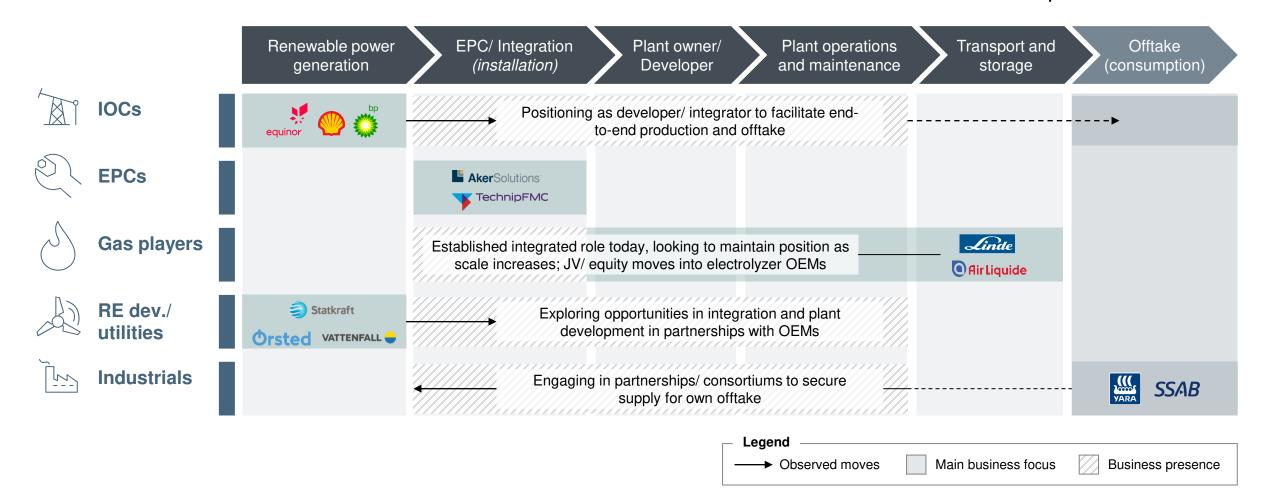

Unit costs dependent on customer

Attractive initial customers have distinct characteristics

- Have a need for zero carbon energy at high availability (e.g. a 'green lean') and therefore willing to pay X/kg today
- Are in locations that give access to attractive government incentives
- Have access / are in close proximity to sources of cheap green electrons
- Lack of access to renewable resources that would meet energy requirements (e.g. need 24/7 power but only have access to wind / solar renewable resources)
- Energy is not a **primary component of customer cost stack** and therefore likely less price sensitive


A wide range of potential hydrogen participation choices exist across the value chain, also implying coordination across multiple stakeholders is required

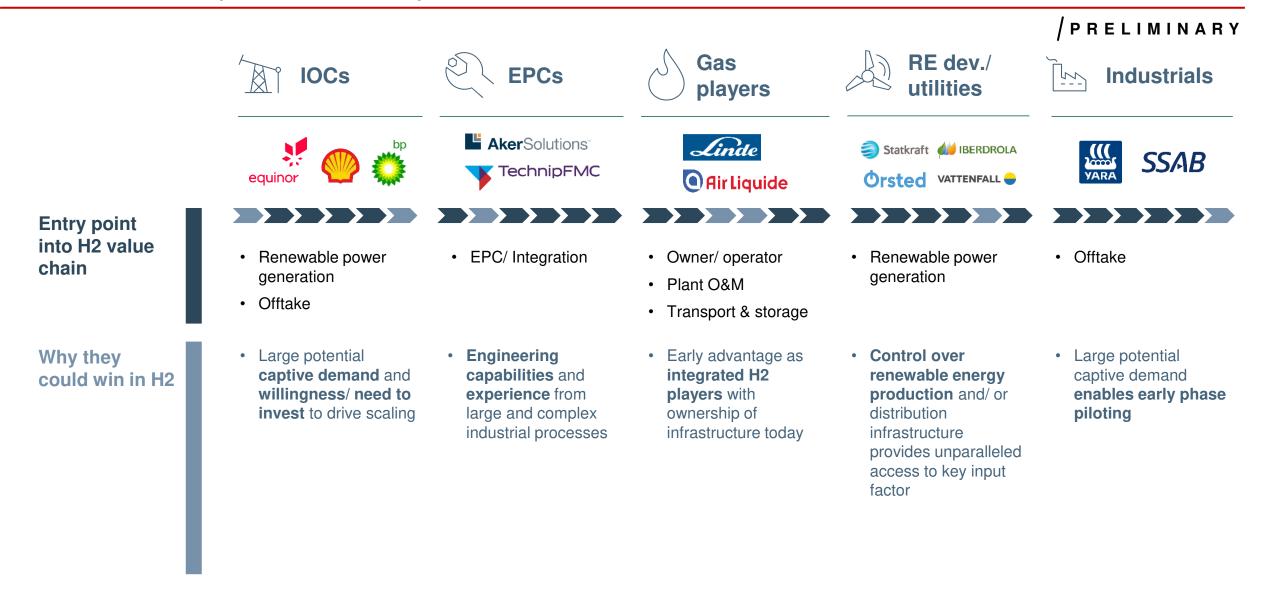
For each value chain step a range of potential participation model options exist


Most participants in the H2 market have formed partnerships to de-risk entry

Source: Market participant interviews, Lit. search

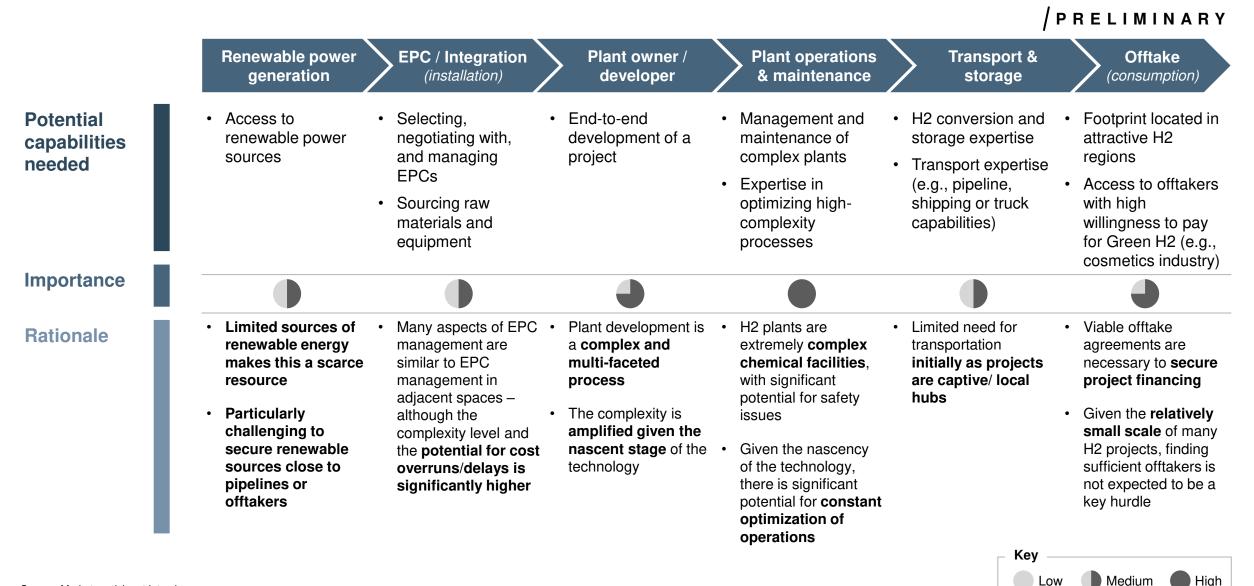

Most renewable energy players are expected to enter market as owner & operators, and are partnering with OEMs and Offtakers

PRELIMINARY



Source: Market participant interviews, Lit. search

For hydrogen, owner & operators and integrator roles likely to stay attractive; Pure transportation role will be less important during the early phases



Offtakers (IOCs, Industrials) have an early advantage in being able to pilot hydrogen asset development with captive demand

Source: Market participant interviews

There are a wide range of capabilities that are beneficial to enter the hydrogen value chain; plant O&M likely to be the most important

Source: Market participant interviews

Entrants need to assess their capabilities against other players in each step of the value chain to determine where to play, and how to enter

	Renewable power generation	EPC/ Integration (installation)	Plant owner/ developer	Plant operations and maintenance	Transport and storage	Offtake (consumption)
IOCs	\bigcirc	(\bigotimes	\bigotimes	(··	\bigotimes
OEMs	\bigotimes	\bigotimes	\bigotimes	\bigotimes	\bigotimes	\bigotimes
EPC	\bigotimes	\bigotimes	\bigotimes	\bigotimes	\bigotimes	\bigotimes
Gas (inc. IGCs)	\bigotimes	([.]	\bigotimes	\bigotimes	\bigotimes	\bigotimes
RE dev./ utilities	\bigotimes		\bigotimes		\bigotimes	\bigotimes
Industrials	\bigotimes		\bigotimes	\bigotimes	\bigotimes	\bigotimes
				Clear capabilities	Some capabilities	No/ limited capabilities
Source: Market participant	interviews		uithaut Daia's seiseuritten sonsaut		<u> </u>	BAIN & COMPANY (1) 40

Key questions to address for companies considering participation in hydrogen

- How does our current **strategy** clarify our level of leadership in the future Hydrogen market? What is the relevance of Hydrogen for our **operations**?
- What are the **critical signposts** we must watch to guide our strategy and what decisions would we make differently when said signposts are triggered?
- What are the **participation models** (e.g. direct ownership, joint ventures and partnerships) we are comfortable pursuing in the context of our strategy?
- How aggressively should we move to **proactively shape policy** to support the acceleration of the Hydrogen market and infrastructure?
- Given the above, how do we **get started** and mobilize the organization around the potential Hydrogen will bring?

